Abstract

Systematic finite element analyses are carried out to model the thermomechanical stresses in on-chip copper interconnect systems. Constitutive behavior of encapsulated copper films, determined by experimentally measuring the stress-temperature response during thermal cycling, is used in the model for predicting stresses in copper interconnect/low-k dielectric structures. Various combinations of oxide and polymer-based low-k dielectric schemes are considered. The evolution of stresses and deformation pattern in the dual-damascene copper, barrier layers, and the dielectrics is seen to have direct connections to the structural integrity of contemporary and future-generation devices. In particular, stresses experienced by the thin barrier layers and the mechanically weak low-k dielectrics are critically assessed. A parametric analysis on the influence of low-k material properties is also conducted. Practical implications in reliability issues such as voiding, interface fracture, electromigration and dielectric failure are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.