Abstract

Bluetooth is a key connectivity technology for the deployment of wireless Personal Area Networks as far as it is the most popular low power communication feature incorporated in devices such as laptops or smartphones. This paper proposes an analytical model to predict the delay of the transmissions in Bluetooth piconets employing Serial Port Profile (SPP), which is massively implemented by Bluetoothenabled equipments. The characterization includes the impact of the overhead and the segmentation imposed by the different protocols involved in the transmission as well as the delay provoked by the polling process that is executed to regulate the activity of the different slaves in the piconet. The model has been empirically evaluated and tested in actual Bluetooth piconets. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.