Abstract

In this paper, we explore the second harmonic generation (SHG) in a lens-shaped InAs/GaAs quantum core/shell (LSQCS). The three-dimensional Schrödinger equation is given under the framework of the effective mass approximation and it is solved by using the Finite Difference Method (FDM). In this work, we have studied the effects of the structure dimensions, the applied transverse electric field, the hydrostatic pressure and the temperature on the SHG. Obtained results show that the SHG coefficient experiences an obvious red shift and an increase in magnitude with increasing the core radius. Therefore, we note that the SHG experiences a blue shift (red shift) with increasing temperature (pressure). Moreover, both resonant peaks values of the SHG are not a monotonic function of the applied electric field. Thus, SHG reaches its optimized magnitude at a low electric field intensity which is directed along one side of the cross section of the structure under investigation. Finally, at a low electric field intensity, a comparative analysis has shown that the SHG magnitude in LSQCS was 22% higher than that of the uncapped single quantum dot (SQD and a red shift has occurred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.