Abstract

A Helmholtz free energy for a martensitic transformation of a single crystalline shape-memory alloy is obtained by a micromechanical approach. 24 variants of the single crystal are taken into account. In the framework of irreversible thermodynamics, a kinetic relation, a martensitic nucleation criterion and the reorientation criterion of martensitic variants are obtained. These relations are valid for a three-dimensional proportional or non-proportional mechanical loading or a combination of mechanical and thermal loading. Reorientation behavior of a single crystalline shape-memory alloy CuZnAl is simulated. When a tensile load is applied to a thermally-induced martensite, 24 self-accommodated martensitic variants are reoriented to the most favorable variant. In the following unloading and compression load, the most favorable variant in the tensile load is reoriented to the most favorable variant in this loading condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.