Abstract
The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11-25% semiquinone (with reduced [Formula: see text]) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123-3132, 2005; Belyaeva et al. Photosynth Res 98:105-119, 2008, Plant Physiol Biochem 77:49-59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid (3)Car(t) population is the main NPQ regulator decaying in the time interval of 6-8μs. So the SFITFY increase up to the maximum level [Formula: see text]/F 0 (at ~50μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the (3)Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680(+) reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from [Formula: see text] slower in alga as compared to leaf samples was elucidated by the dynamics of [Formula: see text] fractions to fit SFITFY data. Low membrane energization after the 10ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1.4, 4, 100% the pHS in stroma is fitted to 7.3, 7.4, and 7.7, respectively. The biggest ∆pH difference between stroma and lumen was found to be 1.2, thus pH- dependent NPQ was not considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.