Abstract

The scope of this work was to investigate the impact of the border effects and the 3-D architecture of a fallow field on: 1) its bidirectional reflectance factor (BRF); 2) its PAR (photosynthetically active radiation) regime; and, to a lesser extent, 3) on its carbon assimilation. For this purpose, laboratory BRF measurements were conducted on a sample of a fallow field. Moreover, we modified a 3-D radiative transfer model in order to simulate the visible and near infrared BRF of finite and heterogeneous media. Several scene representations were used (finite and infinite scenes with/without 1-D or 3-D distribution of leaf area index [LAI]). Results showed that border effects and LAI distribution strongly affect the BRF, with variations as large as 40% depending on the scene representations and on the spectral domain. PAR profiles and instantaneous canopy carbon assimilation of an infinite scene (natural conditions) were also studied with the 3-D model. The results stressed that, in the case of a fallow field, the use of a simple LAI profile provides enough information to accurately simulate the effects of the architecture on the PAR regime and the carbon assimilation of a fallow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.