Abstract

A theoretical study of effects of the different factors on fluctuation of post-synaptic potential (PSP) amplitudes was undertaken, using computation of regions of permissible values (RPV) of the ratio between the variance and the mean number of the quanta released (R 1) and the ratio between the third moment and the variance (R 2). The RPVs of these indexes for the binomial model were compared with regions determined for a number of models incorporating several factors. It has been shown that the involvement of temporal non-uniformity of transmitter release probability, decremental spreading of potentials along dendrites, and failure of spike propagation give the values of skewness index R 2 less, compared to the binomial model. Simultaneously, a number of other factors, especially spatial non-uniformity of release probabilities in single release sites, would give amplitude histograms with high positive values of the index. The values of R 1 and R 2, calculated for 21 samples of sensorimotor EPSP amplitudes, were biased from RPV of these parameters constructed for the binomial model. The scattergram of R 1 and R 2 can be explained by the presence of two kinds of contacts which release quantum with different probabilities. The same was true for the beta-model based on the assumption that probabilities of quantal release are a sample of values of random variable that has beta-distribution. From analysis of the distribution of individual release probabilities, obtained from evaluation of beta-model parameters, is concluded that a greater part of boutons in the sensorimotor synapses release transmitter with very low probabilities, there being, however, a few boutons with probabilities close to 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call