Abstract

The flux dropout of relativistic electrons in the earth’s outer radiation belt, during the main phase of the 26 March 1995 magnetic storm is examined. Outer belt measurements by the Radiation Environment Monitor, REM aboard the STRV-1b satellite are presented to characterize this dropout. In order to simulate the dynamics of the electron belt during the storm main phase a particle tracing code was developed which allows to trace the trajectories of equatorially mirroring electrons in a dynamic magnetospheric electromagnetic field. Two simulations were performed in a non-stationary magnetic field, one taking only the induced electric field into account (fully adiabatic motion), and one with an additional non-stationary convection electric field. The simulations show, that adiabatic deceleration can produce the observed count rate decrease and also the observed inward motion of the count rate peak. The convection electric field causes diffusion, which can take particles from low L values out to the magnetopause and contribute to an additional loss of particles, which is suggested by the observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.