Abstract

A theoretical investigation has been conducted for the prediction of the critical height at the onset of gas entrainment during single discharge from a stratified, two-phase region through a side branch with a finite diameter. Two different models have been developed, a simplified point-sink model and a three-dimensional finite-branch model. The two models are based on a new criterion for the onset of gas entrainment. The results of the predicted critical heights at the onset of gas entrainment showed that the finite-branch model approaches the physical limits at low Froude numbers. However, as the values of the Froude number increased, the predictions of both models eventually converged to the same value. Based on the results of the models, the critical height corresponding to the onset of gas entrainment was found to be a function of Froude number and fluid densities. The results of both models are compared with available experimental data. The comparisons illustrate a very good agreement between the measured and predicted values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.