Abstract

This paper deals with modeling the non-linear rheological behavior of lubricating greases at very low shear rates. With this aim, dynamic linear viscoelastic, non-linear stress relaxation, transient and steady-state shear flow, and transient first normal stress difference measurements have been carried out on a diurea-derivative lubricating grease. A factorable non-linear viscoelasticity model, the Wagner integral model, derived from the K-BKZ constitutive equation, was used in order to predict the non-linear rheological response of the above-mentioned lubricating grease under shear. The time-dependent part of the model was described by its linear relaxation spectrum, whilst two different damping functions (Wagner and Soskey-Winter’s damping functions) were analysed as the strain-dependent factor. The continuous linear relaxation spectrum was estimated, using regularization techniques, from the dynamic linear viscoelasticity functions. The damping function was calculated from non-linear stress relaxation tests. The constitutive model, with Soskey-Winter’s damping function, predicted the steady-state flow curve, the transient shear stress and the transient first normal stress differences of the lubricating grease studied fairly well. [S0742-4787(00)01603-9]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call