Abstract

The study deals with the synthesis of nitrous oxide via selective oxidation of ammonia in a microreactor (MCR), which is a metal disk with cylindrical channels filled with the manganese-bismuth oxide catalyst. The proposed 3D mathematical model of MCR takes into account axial and radial heat and mass transfer, catalytic reactions and related changes of the reaction mixture volume, heat exchange between the disk and channels, and thermal conductivity of the disk. Parameters providing the maximum output of nitrous oxide were determined with allowance for restrictions on the temperature in MCR channels. The highest efficiency of the nitrous oxide synthesis is achieved at a temperature of the outer edge of reactor 370 °С and an inlet concentration of ammonia 20 vol.%. The output per unit catalyst volume in MCR is approximately 1.5 times higher as compared to a tubular reactor; the maximum temperature corresponds to the optimal one, which provides the best selectivity of the process with respect to nitrous oxide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call