Abstract

Abstract Maleic Anhydride (MA) production by selective oxidation of n-butane in a Multi-Tubular Fixed Bed reactor is constrained by the flammability limits. The use of Fluidized Bed circumvents this constraint but suffers from high back mixing. The Circulating Fluidized Bed (CFB) reduces the back mixing of the catalyst and enhances the catalyst activity by reactivating the catalyst. A simple reactor model with suitable hydrodynamic and kinetic models at the operating conditions of both the pilot and commercial MA CFB reactors is proposed. A dispersion model with variable gas density is used for modeling the hydrodynamics of these reactors. The reactors' configurational complexities are also accounted for in the model. The data fitting exercise of the proposed reactor model is performed. The proposed method simultaneously minimizes the total bias based on the individual biases for each component of the multi component reactor system and the total error in a multi-objective framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.