Abstract
This work is concerned with the magnetic field-induced rearrangement of martensitic variants in magnetic shape memory alloys (MSMAs). In addition to the variant reorientation, the rotation of the magnetization and magnetic domain wall motion are considered as the microstructural mechanisms causing the macroscopically observable constitutive response. The considered free energy terms are the elastic strain energy, the Zeeman energy and the magnetocrystalline anisotropy energy. It is shown how thermodynamic constraints on the magnetization rotation lead to only partial reorientation of the martensitic variants under higher stresses. A straightforward methodology has been devised for the calibration of model parameters based on experimental data. The presented model predictions indicate an improvement of the predictability of the nonlinear strain hysteresis and in particular the magnetization hysteresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.