Abstract

The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl–Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.