Abstract
Under large quasi-static loads, the incudo-malleolar joint (IM joint), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. To investigate the influence of the behavior of the IM joint, a detailed simulation model of the IM-complex is created. Mathematical modeling of the IM joint behavior under quasi-static excitation requires adequate modeling of the mechanics of the diarthrodial joint. Therefore, the geometry of the articular surfaces, the ligaments, as well as their viscoelastic properties have to be included in the model. The contact of the articular surfaces is implemented using a penalty based contact formulation utilizing the geometric information obtained from micro computer tomography (micro-CT) scans. The ligaments of the joint capsule are modeled by distributing force elements along the joint capsule, with the position and orientation derived from the micro-CT scans. It is shown that the effects which were observed in measurements on human temporal bones are described adequately by the model, if the contact of the articular surfaces and the preload of the viscoelastic fibers are taken into account in the simulation model. In the following, the detailed model is implemented in an elastic multibody system of the entire ear. The model allows the study of different quasi-static load cases of the ossicles, such as it occurs in the reconstruction of the middle ear and form the basis for future simulative studies of sound transmission in natural or reconstructed ears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.