Abstract
AbstractHypervelocity impacts can generate hydrothermal systems, which have been suggested as candidate environments for prebiotic chemistry on the early Earth. The Haughton impact structure (a 23 km diameter crater located on Devon Island, Nunavut, Arctic Canada) displays evidence of water‐rock alteration indicative of a hydrothermal system generated from a cosmic impact. To model the formation of this crater and subsequent hydrothermal alteration, we have successfully developed a new two‐code methodology that utilizes a shock physics code and a hydrothermal code (HYDROTHERM). We can best reproduce the Haughton crater with a ∼700 m diameter projectile with an impact velocity of 14 km/s. With our approach, we were able to match all the major geological constraints observed at the Haughton impact structure. Our models show that the Haughton crater interior could have sustained temperatures ideal for thermophilic and hyperthermophilic life (50–120°C) for more than 50,000 years, indicating that these systems can sustain prebiotic chemistry and life for longer than previously estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.