Abstract

Healthy subjects were asked to make a voluntary ramp and hold contraction. The duration of the ramp stage was 500 ms, and the torque increment in this period was set to 15 Nm. The contraction was made from a relaxed and from a 5 Nm background torque situation. Hoffmann (H-) reflexes were elicited during the voluntary contraction, mostly with 100 ms intervals. These experiments showed an increase (facilitation) in the H-reflex before the torque or the EMG started to increase. This facilitation of the H-reflex remained during all the stages of the voluntary movement and declined to normal levels again only at the very end of the hold phase, which lasted for one second. This specific pattern of facilitation during a voluntary contraction was modeled using a modeling language, that is specifically designed to calculate neuronal systems with a high degree of reality (Ekeberg et al., 1991). Our model consisted of a motoneuron pool with 200 neurons connected to an EMG-model of the human soleus muscle and an extra group of higher-level neurons for controlling the amount of decrease of presynaptic inhibition. The model was used to simulate the observed modulation of the H-reflex with both a presynaptic and a postsynaptic mechanism. Simulations showed that a continuous change in the descending control signals is needed to make the model based on postsynaptic mechanism fit with the experimental data, whereas no extra control from the CNS over the excitatory drive to the motoneuron pool is needed when the decrease of presynaptic inhibition mechanism is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call