Abstract

The paper simulates the process of the migration of a single energy excitation along a chain of tryptophans in cell microtubules connected by dipole–dipole interaction. The paper shows that the excited states propagation rate falls within the range of nerve impulse velocity. It was shown that such a process also causes a transfer of quantum entanglement between tryptophans, so that microtubules can be considered as signaling system, the basis for transmitting information via the quantum channel. The conditions under which the migration of entangled states in the microtubule is possible are obtained. In a certain sense, it allows us to argue that the signal function of tryptophans works as an analogue of a quantum repeater that transmits entangled states over microtubule by relaying through intermediate tryptophans. Thus, the paper shows that the tryptophan system can be considered as an environment that supports the existence of entangled states during the time comparable with the time of the processes in biosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.