Abstract

Electrocoagulation (EC) which is characterized by in-situ generation of coagulant and hydroxide flocs with high absorption ability is an environmental-friendly process for treating wastewater with heavy metal ions and toxic organics. In order to get a systematic understanding of EC process, a steady state model considering electrochemical, hydrolysis reaction, mass and momentum transfer was established. The coagulant (Al3+), H+ and OH− are generated at the direction of streamline. However, the concentration of these species increases and reaches its maximum near inlet and after that they decrease gradually to a much lower level. We found that there are three areas in EC channel: acid front, base front and buffering area, which has also been found in electro-kinetic remediation. At the direction of streamline, the electro-generated Al3+ is gradually hydrolyzed to hydroxides. The anionic and cationic hydroxides accumulate in acid front and base front respectively. The insoluble hydroxides will accumulate in buffering area, which could be considered as a trap for hydroxide flocs and pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.