Abstract
This paper presents an accurate and systematic method to simulate the interference imposed on the input/output (I/O) ports of electronic equipment under the electrical fast transients/burst (EFT/B) test. The equivalent circuit of the EFT/B generator and the coupling clamp are modeled respectively. Firstly, a transfer function (TF) of the EFT pulse-forming network is constructed with the latent parameters based on circuit theory. In the TF, two negative real parameters characterize the non-oscillation process of the network while one complex conjugate pair characterizes the damping-oscillation process. The TF of the pulse-forming network is therefore synthesized in the equivalent circuit of the EFT/B generator. Secondly, the standard coupling clamp is modeled based on the scatter (S) parameter obtained by using a vector network analyzer. By applying the vector fitting method during the rational function approximation, a macromodel of the coupling clamp can be obtained and converted to a Spice compatible equivalent circuit. Based on the aforementioned procedures, the interference imposed on the I/O ports can be simulated. The modeling methods are validated experimentally, where the interference in differential mode and common mode is evaluated respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.