Abstract

Soil improvement using the geosynthetic technique is usually used for fine and friable soils. This technique provides a reinforced soil with high shear strength. The interest is certainly well displayed. Indeed, this work aims to numerically assess the geosynthetics placement influence on the fine sand properties. For this purpose, a reduced model has been designed to initially allow simulating the geosynthetic layer incorporation into an unsaturated soil while maintaining vertical stress and measuring the lateral stress generated during this incorporation. The scale model makes it possible to assess the possible displacements experienced by the soil during the direct shear test. Numerical modeling then made it possible to confirm the experimental results and verify these displacements behavior. Numerical modeling was carried out by applying the finite element method considering a behavioral law of the Mohr-Coulomb type for soil and geosynthetics. The results obtained by numerical modeling confirmed the direct shear test functionality in the laboratory. This opens the door to further studies about the geosynthetics effect in the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.