Abstract

ABSTRACTThe rate of hydrolytic degradation of tissue‐engineered scaffolds made from bioresorbable polyesters is dependent on several factors. Some are related to the properties of the degrading polymeric material, but others are related to the geometry of the porous structure and the operating environment. It is well known that the rate of hydrolytic degradation of a given object, porous or nonporous, is lower when it is exposed to dynamic conditions, a flowing medium, than when it operates in static conditions. The most likely reason is the more efficient removal of the acidic degradation products from the vicinity of the polymeric material when it is operating in a flowing medium. In this article, we present a new phenomenological reaction–diffusion model of aliphatic polymer degradation. The model can be used to predict the significance of various factors in in vitro degradation tests, with particular reference to the flow of the degradation medium, and the frequency of medium replacement in the case of static conditions. The developed model was used to simulate the degradation of poly(dl‐lactide‐co‐glycolide) scaffolds with different porosities subjected to static and dynamic testing conditions. The results confirm that the porosity of the scaffold had a significant influence on the degradation rate. It was shown that the combination of dynamic conditions and high porosity effectively reduced the mass loss and molecular weight loss of the degrading polymer. However, the effect of changes in the velocity of the flowing medium had a negligible effect on the rate of degradation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40280.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call