Abstract

This work deals with the prediction of the macroscopic behavior of two-phase composites, based on the Mori–Tanaka scheme combined with an additive/sequential interaction rule and tangent linearization of viscoplastic response. Cyclic tension compression loadings are considered to further validate the approach. The composite is made of spherical inclusions dispersed in a matrix. Both materials have an elastic–viscoplastic behavior. In a second part, finite element calculations are performed using ABAQUS/STANDARD software in order to validate the proposed homogenization technique. A representative volume element is analyzed with 30 randomly distributed inclusions. Comparisons between the additive tangent Mori–Tanaka scheme and finite element calculations are made for different volume fractions of inclusions, different contrasts in elastic and viscous properties and different strain rates and strain amplitudes. These comparisons demonstrate the efficiency of the proposed homogenization scheme. The effect of isotropization of the viscoplastic tangent stiffness is also investigated. It is concluded that quality of predictions does not benefit from such simplification, contrary to the known result for elastic–plastic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.