Abstract
Molecular dynamics (MD) simulations and TDDFT linear response computations were employed to model the molar rotations of the zwitterionic forms of glycine, alanine, proline, and phenylalanine in aqueous solution. The MD simulations inherently take into account averaging the chiroptical response of different amino acid conformers and also allow the effects from vibrational distortions and explicit solvent perturbations on the optical rotation to be modeled. The results show that the chiroptical response correlates strongly to the conformations of these molecules relative to their carboxylate functional groups. Additionally, the molar rotation of phenylalanine shows a correspondence to the molecule's internal rotation about its phenyl group. These findings may be rationalized with established and revised "sector rules" for optical activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.