Abstract

Abstract. Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2, respectively, with the high value of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum changes of 2.5 ppb in January and 4 ppb in July. Chemical direct (the rising up of air temperature directly accelerates surface O3 formation) and indirect (the decrease in NOx at the ground results in the increase in surface O3) effects can play a significant role in O3 changes over this region. The meteorology and air pollution predictions in and around large urban areas are highly sensitive to the anthropogenic heat inputs, suggesting that AH should be considered in the climate and air quality assessments.

Highlights

  • Most energy used for human purposes can eventually turn into anthropogenic heat (AH) within Earth’s land– atmosphere system (Flanner, 2009; Chen et al, 2012)

  • Before 2000, except for some megacities, Anthropogenic heat (AH) fluxes are generally less than 2.5 W m−2 in most parts of the Yangtze River Delta (YRD) region

  • After 2000, the AH fluxes are more than 5 W m−2 in many areas, with the high values over 25 W m−2 centrally appearing along the Yangtze River, around Lake Taihu and beside Hangzhou Bay

Read more

Summary

Introduction

Most energy used for human purposes can eventually turn into anthropogenic heat (AH) within Earth’s land– atmosphere system (Flanner, 2009; Chen et al, 2012). M. Xie et al.: Modeling of the anthropogenic heat flux and its effect on regional meteorology timated to be only 0.028 W m−2. In the densely populated and economically vibrant urban areas, the AH fluxes have been reported to typically range from 20 to 70 W m−2 (Crutzen, 2004; Sailor and Lu, 2004; Fan and Sailor, 2005; Pigeon et al, 2007; Lee et al, 2009), whereas the fluxes might occasionally exceed the value of 100 W m−2 as well (Quah and Roth, 2012; Xie et al, 2015). Accurate prediction of AH emissions is always a key issue that can improve our understanding of human impacts on urban climate and environment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call