Abstract

Applications of foam glass is currently quite wide. This material is applied directly to construction and other human activities. Recent years the attention of scientists aimed at modeling the thermal processes in the production of foamed glass. Appear works in which the developed mathematical model allows to predict the distribution of temperature fields in the foam glass material at various stages of heat treatment of the material. The emergence of these models reveals a number of promising directions in the improvement of technology of producing foamed glass. Within the phenomenological formulation of the problem it is necessary to consider three-dimensional temperature field in the charge of foam-glass and inside the metal mold for foaming. It is necessary to consider the nonstationarity of the process and dynamics of change in macrovisiontm values. It is also worth noting that in the conditions of heat treatment of charge materials occurs difficult the heat transfer. The distribution of temperature fields in the foam glass material is from near-surface regions of the charge to the center. The first objective of the study is to find and describe the distribution of temperature fields in the volume of the foam glass of the charge to reflect changes in microphysically parameters in foam glass batch due to the gradual formation of porosity of the material of the charge from the periphery to the center. The second task is to find conditions for the uniform formation of the pore volume of the material. The paper presents a boundaryvalue problem of heat transfer in foam glass material for the metal mold on the x coordinate. This illustration of temperature field distribution inside the metal mold for foaming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.