Abstract

This study proposes an equivalent-circuit model for the composite right/left-handed (CRLH) coplanar waveguide (CPW) comprising the series interdigital capacitor and shunt meandering short-circuited stub inductor in symmetric configuration. The new technique for extracting the equivalent-circuit elements of the CRLH CPW, which include inductances, capacitances, and resistances to represent the left-handed, right-handed, and lossy characteristics, is developed based on the effective medium concept. The applications to the compact resonators and filters are presented to emphasize the unique features of the CRLH CPW. A novel CRLH CPW resonator with a 0/spl deg/ effective electrical length at resonance is proposed, which gives a 49.1% size reduction when compared with the conventional half-wavelength resonator at 5 GHz. Based on the zeroth-order CRLH CPW resonators, an inductively coupled two-pole bandpass filter with 5.4% 3-dB bandwidth and 2.7-dB insertion loss at 5 GHz is implemented, and it is 51.4% more compact than the conventional structure. A good agreement among the results of the full-wave simulation, equivalent-circuit model, published data, and measurement demonstrates the effectiveness of the proposed modeling technique. To suppress the higher order harmonic spurious passbands, the electromagnetic-bandgap CPW structures are incorporated into the proposed CRLH CPW filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call