Abstract

Repeated stimulation of motor units (MUs) causes an increase of the force output that cannot be explained by linear summation of equal twitches evoked by the same stimulation pattern. To explain this phenomenon, an algorithm for reconstructing the individual twitches, that summate into an unfused tetanus is described in the paper. The algorithm is based on an analytical function for the twitch course modeling. The input parameters of this twitch model are lead time, contraction and half-relaxation times and maximal force. The measured individual twitches and unfused tetani at 10, 20, 30 and 40 Hz stimulation frequency of three rat motor units (slow, fast resistant to fatigue and fast fatigable) are processed. It is concluded that: (1) the analytical function describes precisely the course of individual twitches; (2) the summation of equal twitches does not follow the results from the experimentally measured unfused tetani, the differences depend on the type of the MU and are bigger for higher values of stimulation frequency and fusion index; (3) the reconstruction of individual twitches from experimental tetanic records can be successful if the tetanus is feebly fused (fusion index up to 0.7); (4) both the maximal forces and time parameters of individual twitches subtracted from unfused tetani change and influence the course of each tetanus. A discrepancy with respect to the relaxation phase was observed between experimental results and model prediction for tetani with fusion index exceeding 0.7. This phase was predicted longer than the experimental one for better fused tetani. Therefore, a separate series of physiological experiments and then, more complex model are necessary for explanation of this distinction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.