Abstract
Electroplated Cu films are known to change their microstructure at room temperature due to the self-annealing effect. This recrystallization process results in a film-thickness-dependent stress evolution. Films with the thickness of 5μm and below decrease in stress with time, while thicker films reveal initially an increase in film stress followed by a stress relaxation at a later stage. This behavior is explained by the superposition of grain growth and grain size dependent yielding. Existing models have been used and improved to describe the mechanisms related to stress evolution. In general, the models proposed in this study provide a satisfactory description of the stress evolution of electroplated Cu films and the simulated results show good agreement with the experimental data. This gives the possibility to evaluate and predict mechanical behavior of electroplated Cu films at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.