Abstract

ABSTRACTGrain size and strain distribution functions of polycrystals of SiC with nanosize grains were examined based on X-ray diffraction data and ab initio calculations of scattered intensity from Debye functions. A tentative model of distribution of strain induced under high isostatic pressure in nanoparticles with different grain size is presented. Nanocrystalline SiC powders with grains down to 80Å in diameter were examined. In situ high pressure diffraction experiments were performed in cubic anvil cell MAX80 (up to 6 GPa) and in Diamond Anvil Cell (DAC) (up to 45 GPa) at HASYLAB, Hamburg, Germany. Shape of the Bragg lines was analysed with the use of two methods: (i) calculation of theoretical diffraction patterns based on modeling of one-dimensional disordering and ab initio calculation of scattered intensity starting from Debye functions and, (ii) approximation of the experimental shape of Bragg reflections by a combination of two functions: Gaussian (G) and Lorentzian (L).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.