Abstract

In the current study, a three-dimensional mold model was established by Fluent software to investigate the fluid flow of three phases (steel–slag–air) in the mold. A quarter of the mold was simulated through the k-e model, volume of fluid (VOF) model, solidification model and continuum surface force (CFS) method. The interfacial tension between liquid steel and liquid slag and the oscillation of the mold were added into the model to show the 3D steel–slag interface. The liquid steel exiting from the submerged entry nozzle (SEN) existed as the upper backflow and lower backflow, and flowed towards the wide face and the SEN. The largest speed on the steel–slag interface was located at approximately 0.25 m from the narrow face, which was approximately 0.15 m/s. Under the influence of the upper backflow and the movement of the shell, the slag on the steel–slag interface moved from the narrow face to the SEN, and infiltrated into the gap, which affected the lubrication in the gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.