Abstract
The deformation of metals is known to be largely affected by their stacking fault energies (SFEs). In the review, we examine the theoretical background of three normally used models, supercell model, Ising model, and bond orientation model, for the calculation of SFE of hexagonal-close-packed (hcp) metals and their alloys. To predict the nature of slip in nanocrystalline metals, we further review the generalized stacking fault (GSF) energy curves in hcp metals and alloys. We conclude by discussing the outstanding challenges in the modeling of SFE and GSF energy for studying the mechanical properties of metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.