Abstract

With an energy gap of 1.34 eV, indium phosphide (InP) is an ideal material for solar energy conversion. Much work has been carried out on sputtered indium-tin-oxide (ITO)/InP solar cells but modeling of this structure has long been the subject of debate. The double-layer structure used in this work was originally devised to minimize the surface degradation of InP when exposed to normal heating steps during the fabrication process due to the low congruent temperature of InP. We deposited a thin protective layer of either ITO or indium-tin to protect the front surface of the InP before any heating stages took place. A second layer, ITO, was then deposited to compete the junction. Variation of film deposition conditions, thicknesses and annealing steps worked to improve device performances as well as provide insight into junction mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call