Abstract

Spray deposition is a novel manufacturing process which is currently being developed for producing near-net-shape preforms. Spray deposition involves the creation of a spray of droplets by a gas atomizer and the consolidation of these droplets on a substrate to create a preform. In order to maximize the metallurgical benefits of spray deposition, a thorough characterization of momentum and heat transfer in the gas-atomized spray is required. The present paper describes measurements of particle size, gas velocity, particle velocity, and spray temperature in gasatomized Sn-Pb sprays. Measurements were performed on steady-state axisymmetric sprays which were generated using a close-coupled gas atomizer with Sn-5 wt p t Pb and Sn-38 wt p t Pb alloys, atomizer gas flow rates of 2.5 g/s (0.56 MPa) and 3.4 g/s (1.04 MPa), melt flow rates of 35 and 61 g/s, and atomizer-substrate distances of 180 and 360 mm. Gas velocities in the range to 4 m/s were measured using Pitot tube and laser Doppler anemometry (LDA). Droplet velocities in the range 3 to 32 m/s were determined from photographic streak-length measurements and LDA. Oil calorimetry of the spray enthalpy indicated that the spray temperature decreased with increasing axial distance from the gas atomizer, increasing gas flow rate, and decreasing melt flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.