Abstract

Several advancements in the modeling of soil structure interaction in the light of tunnel excavation are discussed. The theoretical formulation as well as numerical implementation are presented such as to meet the following requirements: simplicity, reliability and practical applicability to make the resulting software product available for a direct use on the construction site. To that end a recently introduced 2D3D modeling of tunnel excavation incorporating the in situ measurements is effectively combined with a fully three-dimensional (3D) beam-like representation of a typical urban structure made of masonry or precast concrete. Both standard and advanced non-linear constitutive models can be adopted to account for a potential shear failure of a subsoil material during excavation consequently triggering the evolution of damage of an above-ground (upper) structure. A simple example is provided to illustrate the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.