Abstract

Powerful free electron lasers (FELs) operating in the soft X-ray regime are offering new possibilities for creating and probing materials under extreme conditions. We describe here simulations to model the interaction of a focused FEL pulse with metallic solids (niobium, vanadium, and their deuterides) at 13.5 nm wavelength (92 eV) with peak intensities between 10<sup>15</sup> to 10<sup>18</sup> W/cm<sup>2</sup> and a fixed pulse length of 15 femtoseconds (full width at half maximum). The interaction of the pulse with the metallic solids was modeled with a non-local thermodynamic equilibrium code that included radiation transfer. The calculations also made use of a self-similar isothermal fluid model for plasma expansion into vacuum. We find that the time-evolution of the simulated critical charge density in the sample results in a critical depth that approaches the observed crater depths in an earlier experiment performed at the FLASH free electron laser in Hamburg. The results show saturation in the ablation process at intensities exceeding 10<sup>16</sup> W/cm<sup>2</sup>. Furthermore, protons and deuterons with kinetic energies of several keV have been measured, and these concur with predictions from the plasma expansion model. The results indicate that the temperature of the plasma reached almost 5 million K after the pulse has passed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.