Abstract

The modeling of slurry-phase reactors for petroleum hydrocracking has been reviewed and analyzed. A general description of the flow regime was proposed, and it is anticipated that due to the operating conditions usually implemented in hydrocracking of heavy oils, the homogeneous bubble flow is usually considered. It was also found in the literature that most of the models are only able to describe the liquid-phase behavior, omitting the dynamic behavior of the gas phase, the dispersion, and deactivation of catalysts, as well as coke formation. Computational fluid dynamics formulations are preferred despite the computational effort involved in the calculations. Also in the majority of those models, simple pseudocomponent kinetic rate expressions have been applied, without enough experimental information referring to kinetic parameters. Finally a generalized reactor model, which considers all mass and heat transfer phenomena, is proposed based on the literature, and details are provided to estimate all of t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.