Abstract

Design and optimization of biomass gasification faces the challenge of feedstock variation. Specifically, design calculations require kinetic rate expressions for the given feedstock, whose rigorous determination is demanding and often exceeds available recourses in an early development stage. In this work, we model the slow pyrolysis of biomass for the production of biochar. The aim is to predict the conversion of raw biomass to biochar as a function of the process conditions. Here, we will show that TGA data processed with an isoconversional method is enough to obtain an effective rate expression which allows for predicting the behavior of the biomass at an arbitrary temperature evolution. Such rate expressions can then be used in the process model to simulate conversion of raw biomass to biochar. To illustrate the feasibility of this approach we consider four vastly different biomass, namely spruce wood, pulp, lignin and xylan–lignin, undergoing slow pyrolysis in an indirectly heated rotary kiln reactor. The results of our modeling are compared to experimental data obtained from a 500 kW pilot plant pyrolyzer and to a more detailed process model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call