Abstract

A short pulse train with pulsewidth was generated in a quantum dot mode-locked laser (QD MLL). Due to the short dispersion length, it is required to include group-velocity dispersion (GVD) in modeling pulse train generation and evolution from QD MLLs. On the other hand, Kerr effect is also required to consider due to high peak power density in the laser cavity, and its induced self-phase modulation (SPM) also contributes to the pulse evolution. In this paper, a time domain traveling wave model, including the effect of GVD and SPM, combined with rate equations, is established to model the pulse evolution in a single-section QD MLL. It is shown that the pulse evolution calculated by this model is in reasonable agreement with the experiments. The contribution to the pulse evolution by the GVD and SPM impact is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call