Abstract

Compared to alternating current (AC) grids, direct current (DC) grids are becoming more and more popular. A power distribution approach is suggested in order to solve the issue of uneven power distribution of distributed generation (DG) in a ship DC microgrid. Power control is carried out using a tracking differentiator (TD), while the output power change rate is not greater than the maximum power ramp rate permitted by the battery, and state-of-charge balance is attained quickly. The proposed strategy also reduces the communication pressure on the power grid. A distributed hierarchical control model of a DC microgrid based on a consensus algorithm is created in order to validate the suggested methodology. The simulation results demonstrate that the established model is capable of simulating the DC microgrid accurately, that the states of charge values of the five batteries gradually converge under the adjustment of the secondary strategy, and that the suggested strategy is reasonable and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.