Abstract

An analytical DC model accounting for the self-heating effect of polycrystalline silicon thin-film transistors (poly-Si TFTs) is presented. In deriving the model for the self-heating effect, the temperature dependence of the effective mobility is studied in detail. Based on the mobility model and a first order approximation, a closed-form analytical drain current model considering the self-heating effect is derived. Compared with the available experimental data, the proposed model, which includes the self-heating and kink effects, provides an accurate description of the output characteristics over the linear, the saturation, and the kink regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.