Abstract

This work has investigated the effect of process-induced residual stress on bearing rolling contact fatigue (RCF). A 2-D finite element simulation model of bearing rolling contact has been developed to incorporate the process-induced residual stress profile as initial conditions. The applied load was modeled using the interaction between the roller and the bearing inner race instead of moving elastic-based Hertzian pressure and tangential traction across the surface. Residual stress profiles of an AISI 52100 steel inner race machined by hard turning and grinding were used to evaluate fatigue damage using the critical plane approach. Three cases using the simulation model were assessed: (a) measured residual stress by hard turning; (b) measured residual stress by grinding; and (c) free of residual stress. In addition, the sensitivity of fatigue damage to normal load, tangential traction, and magnitude of surface residual stress was also investigated. The results from simulation post-processing showed that these distinct residual stress profiles only affect near-surface fatigue damage rather than locations deeper in the subsurface. It was concluded, then, that residual stress affects only near-surface initiated RCF rather than subsurface initiated RCF, which has been demonstrated with some prior experimental data. Furthermore, the applied normal load has a significant effect on fatigue damage, while the effects of magnitudes of friction and surface residual stress are small. Lastly, multiaxial fatigue damage parameters used in conjunction with a critical plane approach can characterize the relative fatigue damage under the influence of process-induced residual stress profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.