Abstract

This study aimed to investigate the removal of Reactive Blue 19 from colored wastewater using Fe3O4 magnetic nanoparticles modified with L-arginine (Fe3O4@L-arginine). In order to investigate the effect of independent variables on dye removal and determining the optimum condition, the Box–Behnken Design (BBD) under Response Surface Methodology (RSM) was employed. Fe3O4@L-arginine nanoparticles were synthesized and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. Applying Fe3O4@L-arginine nanoparticles for dye removal showed that; by increasing adsorbent dose and decreasing pH, dye concentration, and ionic strength dye removal has been increased. In the optimum condition, Fe3O4@L-arginine nanoparticles were able to remove dye as high as 96.34% at an initial dye concentration of 50mg/L, adsorbent dose of 0.74g/L, and pH 3. The findings indicated that dye removal followed pseudo-second-order kinetic (R2=0.999) and Freundlich isotherm (R2=0.989). Based on the obtained results, as an efficient and reusable adsorbent, Fe3O4@L-arginine nanoparticles can be successfully applied for dye removal from colored wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.