Abstract

By means of combining the transverse differential equation of pump intensity and the longitudinal differential equation of laser power, an optical model for transversely pumped diode-pumped alkali vapor lasers (DPALs) is established. The spatial distributions of both radius and intensities are considered in the model for pump and laser beams. The simulation results are in good agreement with the experiment ones as compared to the reported pulsed transversely pumped Cs DPALs. Influences of pump power, temperature, cell length, and beam waist on output performance are investigated, which suggests a set of parameters for efficient DPAL operation. In particular, the optimal ratio of the beam waist between the laser and pump beam is demonstrated to be 0.81, which can increase the laser power by 85% larger than the current experimental result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call