Abstract

A plane-strain problem for a limited permeable crack in an adhesive thin interlayer between two semi-infinite piezoelectric spaces is considered. The tensile mechanical stress and the electric displacement are applied at infinity. The interlayer is assumed to be softer than the connected materials; therefore, the zones of mechanical yielding and electric saturations can arise at the crack tips on the continuations of the crack. These zones are considered in this work. It was assumed that the length of electric saturation zones is larger than the length of mechanical yield zones. The zones of mechanical yielding are modeled by the crack continuations with normal compressive stresses applied at its faces. The electric saturation zones are modeled by segments at the crack continuations with prescribed saturated electric displacements. These electric displacements can linearly vary along the mechanical yielding zones. The problem is reduced to the Hilbert–Riemann problem of linear relationship, which is solved exactly. The equation for the determination of the yielding zones length, the expressions for the crack-opening displacement jump, electric potential jump, and J-integral is obtained in an analytical form. In case of finite size body, the finite elements method is used and the variation in the fracture mechanical parameters with respect to this size is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call