Abstract

CO2-selective polymer membranes were recently applied to pilot-scale and bench-scale pre-combustion capture and the obtained CO2 capture ratios were reported to be less than 90%, which limits their application in industrial processes such as IGCC plants. This work is aimed to explore the possibility of achieving a CO2 capture ratio >95% and CO2 purity >95% in a gas-separation unit equipped with currently-available CO2-selective polymer membranes. A mathematical model for single-stage membrane gas separation was developed, and the effect of membrane characteristics (permeance and selectivity), as well as the operating parameters such as feed and permeate pressure, and feed flow rate on the performance of CO2 capture was investigated. The simulation results reveal the optimal conditions that are necessary for a high-performance CO2 capture process using the real industrial syngas and highlight the potential of facilitated transport membranes for CO2 removal in both the oxygen-blown and air-blown IGCC processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call