Abstract

A model of the formation of porosity during the DC casting of Al–Mg alloys was developed and incorporated as a post-processor to a commercial transient macromodel of the three dimensional heat transfer and fluid flow. The porosity model not only predicts the percentage porosity, but also the size, shape and distribution of the pores. The sensitivity of the model to process and alloy variations was evaluated, showing the importance of the cooling rate and hydrogen concentration. An experimental study of the amount of porosity in laboratory scale (250×400 mm cross-section) DC cast ingots of Al 2, 4 and 6 wt.% Mg was performed. The results from these experimental billets were used to validate the model as a function of the location in the ingot and the initial hydrogen and magnesium content. The model correctly predicted the experimentally observed trends, showing good correlation to the measured percentage porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.