Abstract

We present a basic framework for modeling collective mode effects in photocurrent measurements performed on two-dimensional materials using nano-optical scanned probes. We consider photothermal, photovoltaic, and bolometric contributions to the photocurrent. We show that any one of these can dominate depending on frequency, temperature, applied bias, and sample geometry. Our model is able to account for periodic spatial oscillations (fringes) of the photocurrent observed near sample edges or inhomogeneities. For the case of a non-absorbing substrate, we find a direct relation between the spectra measured by the photocurrent nanoscopy and its parental scanning technique near-field optical microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call