Abstract

The influence of plasma beta effects on the edge plasma transport in the Wendelstein 7-X standard configuration is studied systematically by using EMC3-EIRENE combined with a 3D equilibrium code named HINT. The magnetic topology changes induced by plasma beta effects are significantly reflected in plasma transport behaviors and heat flux patterns on divertor targets. After validating the modeling strategy by comparisons with experimental data, the extended simulations for high performance plasmas show that the threshold separatrix density for accessing the power detachment is reduced in higher beta plasmas. Compared with the vacuum field case, the impurity radiation distributions with finite beta effects are modified in the magnetic island region. The divertor heat flux is distributed more evenly along the toroidal direction on the strike line at the vertical target. The strike line on the horizontal target moves towards the pumping gap with an increase in the plasma beta. In addition, the different pressure profiles with the same central beta also result in a modified heat flux pattern on the divertor targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.