Abstract

This paper focuses on the modeling of heat and mass transfer in precursor containing droplets injected into a plasma jet and the estimation of precipitate formation in these droplets from the solute. A hybrid model is employed where the plasma temperature and velocity fields are obtained from previous experimental results and the heat and mass transfer around droplets are modeled. The precipitate formation zones from the zirconium acetate solution in these droplets are estimated based on the solute concentration field within the droplet. A simple homogeneous nucleation hypothesis is employed in predicting the regions of droplets where zirconia might precipitate. The effects of droplet size, injection velocity and angle, plasma conditions as well as the solute mass diffusivity are considered. Micrographs from single pass coating experiments give credible evidence of the presence of similar types of particle morphologies in agreement with this modeling study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.